Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1.

نویسندگان

  • Dragana Ahel
  • Zuzana Horejsí
  • Nicola Wiechens
  • Sophie E Polo
  • Elisa Garcia-Wilson
  • Ivan Ahel
  • Helen Flynn
  • Mark Skehel
  • Stephen C West
  • Stephen P Jackson
  • Tom Owen-Hughes
  • Simon J Boulton
چکیده

Posttranslational modifications play key roles in regulating chromatin plasticity. Although various chromatin-remodeling enzymes have been described that respond to specific histone modifications, little is known about the role of poly[adenosine 5'-diphosphate (ADP)-ribose] in chromatin remodeling. Here, we identify a chromatin-remodeling enzyme, ALC1 (Amplified in Liver Cancer 1, also known as CHD1L), that interacts with poly(ADP-ribose) and catalyzes PARP1-stimulated nucleosome sliding. Our results define ALC1 as a DNA damage-response protein whose role in this process is sustained by its association with known DNA repair factors and its rapid poly(ADP-ribose)-dependent recruitment to DNA damage sites. Furthermore, we show that depletion or overexpression of ALC1 results in sensitivity to DNA-damaging agents. Collectively, these results provide new insights into the mechanisms by which poly(ADP-ribose) regulates DNA repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1

The WD40-repeat protein DDB2 is essential for efficient recognition and subsequent removal of ultraviolet (UV)-induced DNA lesions by nucleotide excision repair (NER). However, how DDB2 promotes NER in chromatin is poorly understood. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a novel DDB2-associated factor. We demonstrate that DDB2 facilitated poly(ADP-ribosyl)ation of UV-damage...

متن کامل

ALC1/CHD1L, a chromatin-remodeling enzyme, is required for efficient base excision repair

ALC1/CHD1L is a member of the SNF2 superfamily of ATPases carrying a macrodomain that binds poly(ADP-ribose). Poly(ADP-ribose) polymerase (PARP) 1 and 2 synthesize poly(ADP-ribose) at DNA-strand cleavage sites, promoting base excision repair (BER). Although depletion of ALC1 causes increased sensitivity to various DNA-damaging agents (H2O2, UV, and phleomycin), the role played by ALC1 in BER ha...

متن کامل

Mechanistic Insights into Autoinhibition of the Oncogenic Chromatin Remodeler ALC1

Human ALC1 is an oncogene-encoded chromatin-remodeling enzyme required for DNA repair that possesses a poly(ADP-ribose) (PAR)-binding macro domain. Its engagement with PARylated PARP1 activates ALC1 at sites of DNA damage, but the underlying mechanism remains unclear. Here, we establish a dual role for the macro domain in autoinhibition of ALC1 ATPase activity and coupling to nucleosome mobiliz...

متن کامل

Chromatin remodeler ALC1 prevents replication-fork collapse by slowing fork progression

ALC1 (amplified in liver cancer 1), an SNF2 superfamily chromatin-remodeling factor also known as CHD1L (chromodomain helicase/ATPase DNA binding protein 1-like), is implicated in base-excision repair, where PARP (Poly(ADP-ribose) polymerase) mediated Poly(ADP-ribose) signaling facilitates the recruitment of this protein to damage sites. We here demonstrate the critical role played by ALC1 in t...

متن کامل

Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler.

Posttranslational modifications play a key role in recruiting chromatin remodeling and modifying enzymes to specific regions of chromosomes to modulate chromatin structure. Alc1 (amplified in liver cancer 1), a member of the SNF2 ATPase superfamily with a carboxy-terminal macrodomain, is encoded by an oncogene implicated in the pathogenesis of hepatocellular carcinoma. Here we show that Alc1 in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 325 5945  شماره 

صفحات  -

تاریخ انتشار 2009